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356 DERIVATIONS
A.1 POINT PROCESSES: DEFINITION AND MEASURES

A.1.1 Detrended fluctuation analysis for renewal process

To prove Eg. (3.25), we begin by normalizing the sequence of interevent intervals
{rn}. The detrending process removes linear trends from the summed &gries
which is tantamount to removing the mean from the interevent intervals themselves.
With the mean value of the interevent intervals| rendered irrelevant, we set it to
zero for algebraic convenience. Furthermore, we divide by the standard deviation to
generate a zero-mean unit-variance sequgnmge by defining

Tn — E[7] .

or

(A.1)

LTn

Without loss of generality we considér, } instead of{;, } in the following.

For an arbitrary set of ordered paifé&,,,y»)}, 1 < n < k, classical statistical
theory (Press, Teukolsky, Vetterling & Flannery, 1992) yields the residual errors after
subtracting the trends. If we define

Zn = aty, + b
and
k
X => wh (A3)
n=1
(see Fig. 3.4), and find andb that minimizey?, we obtain
S1uS? + 882, — 25,5,S,
=8y, + — s . A4
X = Ow SSy— S? (A-4)
where we have used the notation of Press et al. (1992) and defined
S= 22:1 1 S = me:l tn Su = me:l tn (A.5)
Sy = 22:1 Yn Sty = Zﬁ:l tnYn  Syy = Zﬁ:l Yr-
Substitutingt,, = n into Eq. (A.5) we obtain
S = YF 1=k
S = Taoatn =Y n=k(k+1)/2 A6)
S = Yaoath =0’ =k(k+1)(2k+1)/6 '
St’y = ZZ:I t”y” = Z::l NYn.-

To establish the link with detrended fluctuation analysis, we need to substitute
for t,, and take the expectation of Eq. (A.4). (We cannot take the expectatign of

S. B. Lowen and M. C. Teich Fractal-Based Point Processes Wiley (Hoboken, NJ), 2005



POINT PROCESSES: DEFINITION AND MEASURES 357

and then perform a least-squares fit silifg,] = 0 by construction; rather, the fit
must precede the expectation.) Taking this expectation yields

SuE[S}] + SE[S,] — 28, E[S,Sy,]
SSi — St ’

where the deterministic nature#f permits us to move sums not involvipg outside
the expectations.

We now proceed to simplify the expectations in Eq. (A.7). The key step involves
the independence of the sequefieg }. In particular, consider the expectation of the
product of two termg,,, andy,,, with m < n; we have

m n
B E E TpXq
p=1g=1

m n

= Z Z Elz,z]

p=1g¢=1

E[x’] = E[S,,] + (A7)

E[ymyn] =

m

= Z {Elzpzy] — zql} + Z Z Elz,] Elz,]
! %

p=1gq

= Z{l—OxO}—i—ZZOxO

p=1 ¢q=1
q#p

= m, (A.8)

and the reason for constructing a zero-mean unit-variance seqfieptaow be-
comes apparent. In general, we h&fe,,y,] = min(m,n), the smaller ofn and
n. Employing Eq. (A.8) and the last line of Eq. (A.6), we obtain

[ k k k
E[Syy] = E ZQZ] :ZE[%ZJ :Zn

= k(k+1)/2 (A.9)
Tk k ko k E ok
E[Sgﬂ = E Z Zym’yn] = Z ZEymyn Z Zmin(m,n)
Lm=1n=1 m=1n=1 m=1n=1
= k(k+1)(2k+1)/6 (A.10)

m min(m, n)

=
cdC/)
1%
<
|
M-
M-

Il
??‘
—~
ol
_I_

1)(5k% 4 5k +2) /24 (A.11)

mn min(m, n)

el
@
*
\
M-
M-

3
Il
_

I
=
o
+

1)(2k + 1)(2k* 4 2k + 1) /30. (A.12)
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358 DERIVATIONS

Finally, substituting Egs. (A.12) and (A.6) into Eq. (A.7), after a fair amount of
algebra we obtain
E[x*] = (k* — 4)/15. (A.13)

Normalizing Eq. (A.13) by the number of valuksgeneralizing to arbitrary variance,
and taking the square root yields the final result presented in Eqg. (3.25).

A.2 POINT PROCESSES: EXAMPLES

A.2.1 Moments for renewal process

In this section we derive expressions for the count probabilities and moments of a
stationary renewal point procegd/ (t).

Let s be any time selected independentlydif (¢), and recall that the random
variabled(s) denotes the time remaining betweeand the next event idN (¢). We
reiterate Eq. (3.12), which provides

po(s) = [1—P(s)]/E[r]
E[,u]/ pr(u) du. (A.14)

The associated characteristic function becomes

0 .
/ po(t) e ™" dt
0

= E[u]/ / pr(v) e do dt
t=0 Jv=t

= E[u]/ pT(v)/ e~ Wt dt dv
v=0 Jt=0

o0

= (iw)™! E[,u]/ pr(v) [1— eﬂ"*’”] dv

= (i) " Efu][1 - 6, ()]. (A.15)

To simplify the notation, we can set= 0 without loss of generality for a stationary
renewal point process, thereby permitting the use’(f) instead of N (¢). With
this Ansatz, consider the probability density for thih event following the origin
occurring at a timel’. As a result of the renewal nature @ (¢), this becomes
p-(v) convolved with itselfn times, all convolved withyy (v) as the time to the first
event. The integral of this probability density yields the probability thatitheevent
occurs by the tim@”, which is equivalent to the probability that at leastvents have
occurred inZ(T).

We thus arrive at

Po(w)

T
Pr{Z(T) > n} = / po * P (t) dt, (A.16)
0
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POINT PROCESSES: EXAMPLES 359

so that
Pr{Z(T)=n} = Pr{Z(T)>n—1}-Pr{Z(T) > n}
0 n <0
= 01 [y po(t)dt n=0 (A17)
S pgx [pE7D — )6y dt n>0,

which is the probability distribution for the number of cougt&l"). We have used the
notation0— for the lower limit in Eq. (A.17) and subsequently to explicitly include
delta functions that may occur at= 0.

Suppose we now carry out a Fourier transform on Eq. (A.17):

fi(w,n) /000 e T Pr{Z(T) = n}dT

0 n<0
= { (W) ' —E}] (w)?[1-¢,(w)] n=0 (A18)
Ely] (iw)"?[1 — ¢, (w)]” o0 (w) n >0,

and following this take the transform, which yields a time and event-number gen-
erating functionfz(w, 2):

fo(w,2) = Zfl(w,n)z_”
= (iw)™" = Elu] (iw)?[1 = ¢r(w)]
+Elu] (iw) 2[1 - 6. )]* Y 27" 60 w)
n=1

= (iw)™ = Elu] (iw)?[1 = ¢r(w)]

+E[] (i) 7?1~ ¢7(w) *12 ¢r(w
= (i)'~ Ely] (iw) %[l - ¢, ()]
FE[] (i) 21— ¢, )] [z — b ()] (A29)

Next, takek derivatives with respect to

k
% Folw,2) = (~DFE] K (iw) 2 [1 = ¢, (w)]” [2 = - ()] TV (A20)
Setz = 1 to obtain

g 0"
22"

S ha(w,2)| = Bl k()21 - 6, ()] (A21)

z=1

(=1
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360 DERIVATIONS

and carry out an inverse Fourier transform. This yields

k dw

/w e+sz{(—1)k Mfz(w7z)‘z—1] 2m

=—00

— /OO e T Elu] k! (iw) 2 [1 — ¢r (w)] 1ok

=—00 %

T t
EWH{Aﬂ_Z;mf?%_D@)EFquUﬁ
T
= E2 [k / (T —t) GV (1) dt, (A.22)
O_

where we have made use of Eq. (4.15), and again use the ndiatimminclude delta
functions.
However, the two Fourier transforms cancel, so we also obtain

9] k
[d e+in|:(_1)k 0 fz(w72) z_1:| (;7(:

S az"

= L Sz —ny e

= (=1 azkz {Z(T) =n}z
n=0

z=1

i Pr{Z(T) = n} DN iy

n=1 (n — 1)' =1
_ [Z(T) + k — 1!
_I%[ﬂﬂ—ul} (A.23)
EquatingEgs. (A.22) and (A.23) yields the result provided in Eq. (4.19):
Z(T)+ k-1 T -
E{[Z(T)—l]'} =Bl v /fT—t)G ED()d (A4

A.3 PROCESSES BASED ON FRACTIONAL BROWNIAN MOTION

A.3.1 Fractal lognormal noise

Following the method employed by Lowen et al. (1997b), we derive expressions for
the moments and autocorrelation of fractal lognormal noise. To simplify notation,
we reiterate the first and second cumulants:

o E[X]

Cs Var[X]. (A-25)

For the moments gf we have

B = Awm@mmm
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PROCESSES BASED ON FRACTIONAL BROWNIAN MOTION 361

= /jo px(z) exp(nX) dz

oS 2
—1/2 _ (x—C1)
/ (27Cy) exp {nz 50, dz

— 00

e _ 2
= (27702)*1/2/ exp {nCl + n2@ [z = (C1 +nCy)] e
2 2C,

— 00

= exp(nCy +n?Cy/2) (27702)_1/2/ exp(—2%/2Cs) dz

= exp(nCy +n?Cy/2), (A.26)

in agreement with Eq. (6.21).
For the autocorrelation of the rate, we write

Ry (t) Efu(s) u(s +1)]
E{exp[X(s)] exp[X (s + t)]}
= E{exp[X(s) + X(s+1t)]}. (A.27)

To proceed, we dividé (s + t) into two parts, one proportional t& (s) and one
uncorrelated with it

X(s+1t)—Cr= f(t)[X(s) = Ca] + X1 (s,0). (A.28)

Since X (s) is a Gaussian process, so tooXs (s,t), and since the two are un-
correlated, they are also independent. Substituting Eqg. (A.28) into Eq. (A.27) then

yields
R,(t) = E{exp[X(s)+X(s+1t)]}
- E{exp [X(s)+ Ch + F(£) [X(s) — C1] + X1 (s,1)] }
= Elexp{[1+ f(O] X(s)}| E[exp{[1 - f())] C1}]
x E[cxp{)g(s,t)}], (A.29)
v)\érlezrse:)he last step leading to Eq. (A.29) derives from the independedtéspaand

Next we find expressions fgi(¢) as well as for the mean and variance'of (s, t).
Taking the expectation of Eq. (A.28) yields

Ci—C1 = f(t)|C1—Ci]+E[XL(s,t)]
E[X,(s,t)] = 0.
We then multiply Eq. (A.28) byX (s) — C; and take expectations,
B{[X (s +1) = C1] [X(s) - C1]}
= fOE{[X(s) — C1][X(s) — C1]} + B{X L (5,1) [X(s) — C1]}
Rx(t)—C? = f(t)Cy+ C1E[X L (s,1)]
f(@) [Rx(t) - CF] /Ca, (A.31)

(A.30)
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362 DERIVATIONS

where we have made use of the independenc @f) and X, (s,t), as well as
Eq. (A.30). Rearranging Eq. (A.28) yields the varianceXaf(s, t):

Xi(sit) = [X(s+1t)—Ci] = f(H)[X(s) — C4]
X1(s,t) = [X(s+1t)—C]*+ (1) [X(s) - C1]?
—2f(t) [X(s) = Ch] [X (s +¢) — C1]
E[XT(s,t)] = Co+ f(t)Co—2f(t) [Rx(t) — CF]
Var[X, (s,t)] = [1— f*(t)]Ca, (A.32)

where we have made use of Eq. (A.31).

Finally, we substitute Egs. (A.30)—(A.32) into Eq. (A.29). To evaluate the ensuing
expressions, consider Eqg. (A.26). Any fixed expression can substituteifothe
second line, so that

Ru(t) = Elexp{[1+ f(t)] X(s)}| Elexp{[1 - f(1)] C1}]
X E[exp{XL(s,t)}]
= exp{[L+ f(t)]C1 + [L+ f(1)]* C2/2} exp{[L — f(t)] C1}
X eXp{ [1 - f2(t)}02/2}
R,(t) = exp{201+[1+ f(t)]C2}
= exp{2[C1 + C2/2]} exp{f(t) C2}
= E?[u) exp{Rx(t) — E*[X]}, (A.33)

in agreement with Eq. (6.22).

A.4 FRACTAL RENEWAL PROCESSES

In preparation for the results that follow, we first obtain expressions for three quantities
involving the square root of negative unity. Using the De Moivre relatiod forrm/2
provides

exp(im/2) = cos(w/2) +isin(n/2)
- i (A.34)

Raising both sides of Eq. (A.34) to the same power yields

> T

1 = exp(izm/2)
Re{i®} = cos(am/2). (A.35)

The second expression is obtained by taking logarithm of both sides of Eq. (A.34):

In(3) = in/2. (A.36)
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FRACTAL RENEWAL PROCESSES 363

We can generally ignore multiplicative factors inside the logarithm when the argument
otherwise assumes a large or small value. This is demonstrated via

In(cz) .. In(c) +In(z)
z—0 h’l(]}) o ill% 111(51))
B . In(c)
= L4 lm In(z)
= 1, (A.37)

so thatln(cz) = In(z) asz — 0 for any finite value:. A similar result obtains in the

limit z — oco. Exceptions occur in cases where we must distinguish two forms that

would otherwise appear identical, such as those in Egs. (7.18) and (7.19)3far
Third, we derive an expression for the square root of a complex number:

Va+ib = c+id
a+ib = & —d*+i2cd
a = 2—d?
b = 2cd
a2+ = A 4d*—272d + 4c2d? = (P + d?)?
\/m = *+4d°
a2+b2+a = 2

Va2 +b2—a = 24>

vaZz +b2+a
2

vaz+b2—a
—

(A.38)

Thus,the quantityc + id forms a solution ta/a + b.

A.4.1 Spectrum in the mid-frequency range

In this section we obtain approximate expressions for the spectrum of the fractal
renewal point process, as well as for the symmetric alternating fractal renewal process,
in the mid-frequency rangdg ! <« f <« A1,

Since the power-law tail of the interevent-interval probability density function
determines the fractal behavior of the process, the results are insensitive to the precise
form of the density. We make use of the abrupt-cutoff power-law form to simplify the
calculations; similar results would result when using any power-law-varying density.
To simplify the notation, we express the results in terms of the radian frequency
w = 27 f; this does not, of course, alter the validity of the arguments.
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We begin with Eq. (7.3), the characteristic function for the abrupt-cutoff power-law
probability density provided in Eq. (7.1). Substituting= «/iw A, we have

Y B/4 A (y+1)
= —wdy , —(r+
o 1—<A/B>7/1 Cew
v B (v+1)
Ogy~Ortt A
1- (A/B)" /1 v dy (A.39)

B/A
= #/ / y~ O gy
1—(A/B)” /i

v 1-(B/A)T
I—(4/BY 7

- 1, (A.40)

where Eq. (A.39) derives from the mid-frequency assumptigr = f < A~L.
Thus, to zeroth order we have (w) =~ 1.
Use of this approximation leads to

JLEO W S 141 | Re{l-odr(w)}
R{1_¢T(w)}NR{1_¢T(u})}_2 |1—¢T(w)’2 (A41)

for the nontrivial part of the point-process spectrum, and to

Re{m} ~ Re{l_l(jb:fw)} = iRe{l — ¢-(w)} (A.42)

for the symmetric alternating fractal renewal process. To obtain asymptotic expres-
sions, we expantl — ¢, (w) into a series of powers af until we obtain the first term
with a nonzero real part. Substituting these results into Egs. (A.41) and (A.42) yields
Egs. (7.8) and (8.11), respectively, as we will show forthwith.

To carry the calculation forward, we employ Eq. (7.3) evaluated at 0 and
subtract Eq. (7.3) again:

iwB
1— ¢ (w) = 4(iw A) [1 - (4/B)"] / (1—e ™zt dz.  (A.43)
twA

SinceB™! < f = w/2r < A7!, we haveA/B — 0 andwB — oc. Defining
z = iwA, we therefore obtain

1—¢r(w) — 727/ (1—e ™)z~ dg
= 'y/ (1—e77Y) y*(VH) dy. (A.44)
1

We proceed to calculate express results for various ranges of the exponent
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FRACTAL RENEWAL PROCESSES 365

e For0 < v < 1 we make use of I'Bpital’s rule to evaluate the limit

so that

: 1_¢‘r

li%ﬁ
1- ¢T(w)
11— ¢r(w)]

1- ¢T(w)

=50 —zln(z)

oo
7/ (1—e )y~ Ot ay
1

For~ = 1, we again use I'iBpital’s rule and evaluate

llgtl) 27
g / ey Tdy
lim —2L —
z—0 ")/z’y
'yzv_l/ e Tz Vdx
lim T
2—0 fyz’y
/ etz Vdx
0
(1 —7), (A.45)
— T(1—7)(iwA)
— I(1-9)wA)
Re{l —¢,(w)} — T(1—7~) cos(my/2) (wA)". (A.46)
/ (1—e®)z%dr
= 1. 2
) —lIn(z)
= lim —A-e)e
z—0 —1/2
= lim l-c
z—0 z
- 1, (A.47)

which, with the help of the results set forth at the beginning of Sec. A.4, leads

to

S. B. Lowen and M. C. Teich

1- (b‘r(w)

1= ¢r(w)|
Re{l - ¢T(w)}

Fractal-Based Point Processes

—(iwA) In(iwA)
—(iwA) In(i) — (iwA) In(wA)
(7m/2)(wA) — i(wA) In(wA)

(A.48)
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366 DERIVATIONS

e Forv > 1in general, the dominant term becomes lineavinThe limit

7/ (1—e?Y) y~ Ot gy
1

hmw — lim
z—0 z z—0 z
g / ey dy
= lim—%
z—0 1
= 7 / y Tdy
1
= 7 (A.49)
v—1
impliesthat
1—¢(w) — ViliwA
1-6, ) — —TzwA, (A50)
-

for all v > 1. To evaluate the spectrum we still require a first term with a
nonzero real part. We continue by expanding the quantity

1—¢r(w) — iwA. (A.51)

Forl < v < 2, the next term arises from the limit

1= ¢r(w) —v2/(v—1)

;li% 27
o0
7/ (1—e )y O dy —yz/(y 1)
— s 1
a llg%) 27
o0
7/ ey Tdy —v/(y—1)
= lim—% —
2z—0 fyz’y

o0
—7/ ey dy
1
220 y(y—1)277?

oo
—72’7—2/ e TtV de
zZ

B e P
= —(y-— 1)71/ e T dx
0
= —(v-1)7'T2-), (A.52)
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FRACTAL RENEWAL PROCESSES 367

so that
Re{l — ¢-(w)} = (v —=1)7'I(2 = 7) [~ cos(my/2)] (wA)?. (A.53)

e For~ = 2 we again obtain logarithmic correction terms,

2 [7 —e )z 3dr — 22
po(w) — 2/~ 1) 2Z/z“ Jo w2

zhgtl) z7In(z) - lli% 2?2 In(z)
/ (1—e )z 3de— 27"
= Il n(z)/2
_ z -3 2
~ im (I—-e _)12 +z
z—0 z /2
. (z=14€e77)
= 1l 5
z—0 2/2
= 1, (A.54)
which results in
Re{l — ¢-(w)} — —(wA)*In(wA). (A.55)

¢ Finally, fory > 2the power-law exponents do not dependyphut are constant
at the square ab:

- ¢r(w) —vz/(y = 1)

2

lim

z—0 z
v [y dy -z - )
= lim 1 5
z—0 z
7/ ey Vdy —v/(y—1)
= lim 1
z—0 2z
7/ ey T dy
= lim 1
z—0 2
= *%7/ y' 7 dy
1
= —372-771 (A.56)
whichgives
Re{l — ¢, (w)} = 57(2—7) 1 (wA)> (A.57)
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368 DERIVATIONS

A.4.2 Spectrumfor ~ = %

For the particular case = % the smooth-transition interevent-interval probability
density function provided in Eq. (7.5) simplifies to

pr(t) = /AJx exp(2 A/B) exp(—A/t) exp(—t/B)t~32,  (A.58)
and the corresponding characteristic function becomes
¢-(w) = exp[2/A/B — 2(A/B + iwA)'/?]. (A.59)
The derivative of Eq. (A.59) ab = 0 yields the mean interevent interval,
Ly w) = ¢@ﬂ4y3+mm4ﬂpA
d(,() T T
E[r] = 1 ingT(w) = VAB. (A.60)
dw w=0

For simplicity, we set the mean interval to unity, so tHd = 1. Equation (A.59)
then becomes

brlw) = exp[24—2(4?+iwd)"’]
= exp {QA —v24 (\/m+ A>1/2
—im(m_A)ﬂ

= exp(—c) [cos(d) — isin(d)], (A.61)

where we have defined
c = VoA (\/W+ A)l/2 — 24 (A.62)
d = V24 (m - A)1/27 (A.63)

makinguse of Eq. (A.38) set out at the beginning of Sec. A.4.
Reiterating Eqg. (4.16) and substituting Eq. (A.61) into it yields

Sn(f) = E*[u] 6(f)
1 +¢T(27rf)}

= Bl Re[l ~ . (2nf)

_ R 1+ e “[cos(d) — isin(d
B P [cos(d) — isin(d

Re{ e® — 2isin(d) — e~ “[cos?(d) + sin®(d)] }
e — 2cos(d) + e “[cos?(d) + sin®(d)]

e — [cos(d) + isin(d)] }
[
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FRACTAL RENEWAL PROCESSES 369
e —e ¢
e —2cos(d) + e ¢
sinh(c)

= osh(d) — cor @’ (A.64)

whichreproduces Egs. (7.10)—(7.12).

A.4.3 Coincidence rate in the medium-time limit

Equation (7.13) derives from Eq. (7.8) via the Fourier-transform-pair relations that
comprise Egs. (3.57) and (3.58). Because our focus is on the mid-scale limit, we
typically ignore delta functions at zero time or frequency, as well as limits for large
times and frequencies.

Results for the region® < v < 1 andl < ~ < 2 follow directly from Egs. (5.44)
and (5.45). It thus remains to consider the ranges2, v = 2, andy = 1.

e For v > 2, the spectrum remains relatively constant in the litiB <
f < 1/A, differing little from its low-frequency limit; it therefore resembles
the spectrum for a homogeneous Poisson process provided in Eq. (4.9¢). The
coincidence rate thus follows the form in Eq. (4.9d), which appearsin Eq. (7.13)
for~ > 2.

e For~y = 2, we begin with the coincidence rate given in Eq. (7.13) to obtain

Sn(f) = 2E[,u]/oocos(27rft) e

A
_ Bl = -1
= - /2wa cos(z)x™ "dx. (A.65)

The cosine factor in the integrand ensures that the integral converges far;large
in fact, since the integral diverges naas 0 and27 f A < 1, the contribution

of this factor for large values of becomes negligible. For small values of

x, the cosine term does not vary significantly, and also becomes unimportant.
Bearing these arguments in mind, we then have to first order

Sn(f) = E[Q'u]/:jAcos(x)x_ldx

E[,u]/l z Yz
2 2 fA

= @ [—In(2rfA)]. (A.66)

Q

This agrees with Eq. (7.8), and thus establishes the validity of Eq. (7.13) for
v =2
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e Forvy = 1, we employ a similar argument but center it on the forward Fourier
transform to obtain

G(t) = 2nE[y] / Oocos(27rft) [In2rfA)] "% @rfA) " tdf

cos(z) [In(Az/t)] ? 2

%

[In(Az/t)] e lde

A
f, o
/1nA3:/t I
[.

Q

In(A/t)
vy 2dy (A.67)

E[u]
A
E[y]
A
Efy]
A
E[u]
A
E[y]
A Ln (A/?) ]
= E[u] A [In(t/4)] ", (A.68)

which accords with Eq. (7.13) foy = 1. Equation (A.67) makes use of the
substitutiony = In(Ax/t).

A.4.4 Normalized variances in the medium-time limit

Proceeding to the normalized varianE¢T’) in Eq. (7.18), Egs. (5.44) and (5.45)
again provide results fdr < v < 1 and1 < v < 2. It therefore remains to consider
the ranges > 2,y = 2, andy = 1:

e Fory > 2, results for the homogeneous Poisson process continue to apply, and
we obtain the result provided in Eq. (4.9a).

e Forvy = 2, we employ Eqg. (3.55) to obtain

2
a0 - B = 2 () /2], = 1B, (A69)

in accordance with Eq. (7.13).
e Forvy = 1, a similar approach leads to

2
- = T L ugrya) T )
E[u]{ 2 3 2 }
24 [In(t/A)  n?(t/A)  In®(t/A)
% 2
2A 1In(t/A)

= E[u A ' [In(t/A)] ", (A.70)

Q
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which is identical to the result given in Eq. (7.13) for= 1.

Results for the normalized Haar-wavelet variadc@”) in Eq. (7.19) follow directly
from Eqgs. (5.44), (5.45), and (4.9a), except for= 1 andy = 2. We employ
Eqg. (3.41) for these two cases:

e Forvy =2, we have

A(T) = 2F(T)-F(T)
= In(T/A4) — 1 In(2T/A)
In(T/A) — 3 In(T/A) — 3 1n(2)
3 In(T/A) — 1 In(2)
= 1In(T/24), (A.71)

in agreement with Eq. (7.19).

e For~y =1, we obtain

A(T) = 2F(T)- F(T)
— 247 In(T/A)] ' T — A" [In(2T/A)] " (2T)
A(T) = 247'T ! !

In(T/A)  In(2T/A)

In(2T/A) —In(T/A)

In(T/A) In(2T/A)
In(2)

In(T/A) In(2T/A)

21n(2) A In(T/4)] ° T, (A.72)

= 2471'T

= 247'T

Q

which also accords with the result provided in Eq. (7.19).

A5 ALTERNATING FRACTAL RENEWAL PROCESS

A.5.1 Alternating-renewal-process spectrum

We obtain the spectrum of the alternating renewal process by calculating a sequence
of quantities, each from the preceding: the probability distribution function of the
counting proces8/(t), the characteristic function of the forward recurrence time, the
autocorrelation, and finally the spectrum.

Assume that at = 0 the alternating fractal renewal process lies in state 1, so that
X (0) = 1. As afirst step, we seek the probability that the count exceeds a certain
even, nonnegative val@e. For this to occur, the intereventinterval that encompasses
t = 0 must end, as well as the nextintervals of both types. The probability that
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N(t) > 2n is then the probability that the aggregate of 2het+ 1 intervals does not
exceed. Thus,

Pr{N(t) > 2n| X (0) =1}

Pr {19&(0) +ni [Tak +Tbk] < t’X(O) = 1}

k=0

t
/0 Poa(s) * pin(s) = pip(s) ds, (A.73)

whered again denotes the forward recurrence time.
We next require an expression for the characteristic function of the forward recur-
rence time. Employing Eq. (3.12), we have

do(w) = /too exp(—iwt) py(t) dt

=0

/f:) eXp(—iwt) [1 — P_I_(t)] E[,u] dt

~ Bl [ " expl(—iwt) / " pe(uw) dudt

=0 =t

— B [ pet) [ expl-ivtydrd

= () Bl [ prlu) [1 = exp(-iot)] du

= (iw) " E[u] [1 - ¢r(w)]. (A.74)

Taking a Fourier transform of the convolutionin Eq. (A.73), and substituting2r f,
yields a simple expression involving characteristic functions

/Oo exp(—i2m ft) Pr{N(t) > 2n| X(0) =1} dt
0
[e’e] t
- / exp(—i2r ft) / Poa(s) * p2(s) % pIE(s) ds dt
0 0

= E[/J'a] (i2ﬂ—f)_2 [1 - ¢Ta(2ﬂ—f)] 7'rla(27rf) :—lb(27rf)7 (A75)

where one factor afi27 f) ~! arises from Eq. (A.74), and the other from the integration
in Eg. (A.73). Similarly, for an odd positive number of intervats+ 1, we obtain

/OO exp(—i2n ft) Pr{N(t) > 2n + 1| X(0) = 1} dt
0

= Elua] (227f) 7 [1 = ¢ra(2nf)] 67,20 f) 67 (20 f). (AT6)
Proceeding to the autocorrelation leads to

Rx(t) = E[X(0)X(?)]
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= Pr{X(0)=1andX(t) =1}
= Pr{X(0)=1} Pr{X(¢t) =1| X(0) =1}
= E[X] Pr{N(t) is ever}

= E[X]Pr {i N(t) = 2n}

= E[X] Y Pr{N(t) =2n}

= EX] Y (Pr{N(t) > — 1} — Pr{N(t) > 2n}>

n=0

E[X] L(AT7)

1+ i (Pr{N(t) > 20+ 1} = Pr{N(t) > 2n})
n=0

Finally, taking the Fourier transform yields the spectrum

Sx(f)/E[X]
_ ﬁ [ exp(—i2m f) Ry (1) dt
2

= B[] Re{/ooo exp(—i2m ft) Rx(t) dt}

= 2Re{/0OO exp(—i2m ft) [1

+ i(Pr{N(t) > 41} — Pr{N(#) > 2n}>] dt}

= 4(f) +2Re{/0°0 exp(—i2m ft)

X i(Pr{N(t) > 20+ 1} = Pr{N(t) > 2n}) dt}

n=0
— () + 2Re{Z Eljta] (27£)72 [1 = $ra(w)]
n=0
x [on,(2n ) 615 @ f) - 07, (2m f) o0y (2 )] }
= 0(f) + 2E[pa) (21 f) 2 Re{ [1 = ¢ra(27f)]

x [1=¢r(2nf)] Y o7, (21 f) ¢?b(27ff)}

n=0
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o(f) +

(27Tf)2 1- ¢Ta(277f) ¢7—b<277f)
which leads directly to Eq. (8.5).

2E[pa] Re{ [1 - ¢.,_a(27rf)] [1 — ¢Tb(27rf)] } , (A.78)

A.5.2 Low-frequency limit of the spectrum

To determine the spectrum #s— 0, we use Eq. (8.5) [or, equivalently, Eq. (A.78)],
retaining terms to second order in frequency at each stage. To simplify the notation,
we use radian frequency = 2 f, and the quantities, ¢, u, andwv to represent fixed
constants. We then have

2

bra(w) =1 — iwE[r,] — % E[r2], (A.79)

alongwith the analogous expression fior, (w). Substituting Eq. (A.79)into Eq. (8.5),
and ignoring the delta function which does not appear in the limit, yields

(E[ra] + E[n]) lim Sx (w)/2

it e [ 6@ [~ )
B “1"’0 i { 1- ¢T(I (w) ¢‘rb(w) }

w2 (in[Ta] + w; E[Tf]) <sz )+ o E [77 )
iwE[rg] + iwE[ry) + o E[ 24 2 E[Tb] + w? B[r,] E[1)]

i Re { sz[Ta]E[Tb]Hw(E[Ta]E[Tb]+E[T,,]E[Ta}) }

= lim Re

w—0

w—0

2iw (Elra] + E[n]) + w* (Bl7;] + B[r)] + 2E[ra] E[n])

Wt
— im Re{%}
w—0 WU + w v

_ limRe{ s+iwt Xv+u/(zw)}

w—0 iwu 4w T v+ u/(iw)

— lim Re{ tu + sv —|;iwt1)2—|—25u/(iw) }
u” +w'v

tu + sv
= hmi2 o)
w—0 u” + w v

tu + sv

7‘112

(Blra] + Eln])” lim Sx (w)
= (tu+sv)/2
= (E[rE[r] + E[n] E[72]) (E[ra] + E[m))
— E[1,] E[7] (E[T(f] + E[7Z] + 2E[7] E[n])
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= E[r,)? E[7£] + E[ra) E[1y] E[7?] + E[r,] E[r) E[7] + E[1]? E[72]
— E[ra] E[n] E[77] — E[7a] E[n] E[7] — 2E[7a]” E[,]?
= E[r)’ E[r{] + E[n)? E[77] — 2E[r,]* E[rs]°
= E[r]? Var[n] + E[n]? Var[r,], (A.80)

which accords with Eq. (8.6).

A.5.3 Spectrum under extreme dwell-time asymmetry

Consider an alternating renewal procéss) for which the timesy, spent in the state
X (t) = b greatly exceed the timeg spent in statéX (¢t) = a. More formally, given
a randomly selected pair of inter-transition intervajsand,, we assume that the
relationPr{r, < 7} ~ 1 holds. In this case, the sum of the dwell times+ 7,
will have marginal statistics that are nearly the same as thosg ahd the process
will closely resemble a filtered version of a renewal point proddést) constructed
solely from the longer intervals,.

Linear systems theory (Papoulis, 1991) leads directly to the spectrum. Citing
Eq. (9.35) in an approximate sense, we have

Sx (1) ~ B[ 1P $x () (n81)

whereSy (f) denotes the spectrum of the renewal point prodéést) constructed
from 7,, H(f) represents the Fourier transform of the filter (whose form we will
establish shortly), and'x (f) is the spectrum of the resulting alternating renewal
process. This approximation remains valid for all nonzero frequencies, but it does
not hold for f = 0; at this frequency the difference between point processes and
real-valued processes requires us to invoke other methods.

Specifying the impulse response functfeft) to be a rectangular filter of (random)
durationr,, we have

H(f) = /oo exp(—i2 f£) h(t) dt

— 0o

/Om exp(—i2m ft) dt
= [l —exp(—i2nfr,)] /(27 f)
= exp(—imf7,) sin(rf1,) /(7 f)
H(NF = sin’(nfra)/(n])?

E { IH(f)IQ} E[r2], (A.82)

Q

where we have made use of the approximatioriz) ~ x for small arguments;,
which is valid in the domairf7, < 1. Finally, substituting Egs. (4.16) and (A.82)
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into Eqg. (A.81) leads to
_E[2] |, [1+¢n(2nf)
Sx(f) =~ B Re{ = o2 f) } . (A.83)

For the contribution af = 0, we note that Eq. (8.5) contains a teRjiX|4(f); inthe
limit considered herei[ X] approache&[r,] /E[r;], which agrees with Eq. (8.9).

A.6 FRACTAL SHOT NOISE

A.6.1 Infinite-area tail

If the impulse response functidi(t) has infinite area in its tail, the resulting shot
noise process is degenerate (Lowen & Teich, 1990, Appendix A). Such an impulse
response function has the property

/ TRt dt = (A.84)

for any finite real numbet. We rewrite Eq. (9.3), considering determiniskcfor
simplicity, to obtain

mfox@)] = -u [ {1 ewl-ih(o)]) d
R L ; {1 — exp|—iwh(t)]} dt
[ - explion(]) de
uf@ = [ (1= expl-iwn(0]) de

Q

pf@-p [ -l-ih@) e (A8S)

= —uf(c) —iwp /OO h(t) dt
= —uf(c) — iwuoo‘, (A.86)

wheref(c) denotes the value of the integral belewWe choose the value eofto be
sufficiently large so that the argument of the exponential lies close to zero, permitting
the approximatiorxp(—x) ~ 1 — x in Eq. (A.85).

Of the two terms in Eq. (A.86), the second has infinite absolute value, indicating
an infinite shot-noise process amplitule unless the first term cancels the second.
However, the integrands in Egs. (A.85) and (A.86) include a unity terryi{ @omust
contain a real component of comparable magnitude to its imaginary component. If
the imaginary components cancel, then a real component of infinite magnitude must
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also exist, again leading to an infinite shot-noise process. In any case, therefore, an
impulse-response function with an infinite-area tail leads to a shot-noise pr&icess
with infinite amplitude. A stochastic amplitud€ does not affect this conclusion.

Even a normalized version of this impulse response function leads to a degenerate
shot noise process (Lowen & Teich, 1991, Appendix D). Consider the fixed-area
family defined by

ah(t)
hp(t)={ [o h(u)du (A.87)
0 otherwise,

where the quantity denotes a specified area as in Eq. (10.12). By construction,
hp(t) has total area. We again rewrite Eq. (9.3) for determinisfic, yielding

wlox@)] = —u [ {1-eolihp]) @
L B el iwa h(t)
B 'u/_oo{l © p[ fBooh(s)ds]} a
. B |, wah(?)
~ —pu /_ ) {1 l1 LR ds” it (A88)
B iwa [P _n(t)dt
-k f_BOC h(s)ds
= —iwpa. (A.89)

As B approacheso, the argument of the exponential decreases without limit, en-
abling the approximatioexp(—x) ~ 1 —x to be used in Eq. (A.88). Equation (A.89)
comprises a power seriesidnwith terms of the power series identified with the cumu-
lants of the shot-noise amplitudé(see Sec. 9.2). The lack of a second-order term (or
indeed of any higher-order terms) indicates that the variance of the process assumes
a value of zero; the amplitude remains fixed at the constant yalu&Ve conclude
that a normalized impulse response function with an infinite-area tail converges to a
constant value, and thus leads to a degenerate process.

A.6.2 Approach to stable form

For fractal shot noise with > 1, A = 0, andB < oo, the amplitude of the shot-noise
processX is not a stable random variable, but it does approach one as the ohte
the driving Poisson process approaches infinity (Lowen & Teich, 1990, Appendix B).

To demonstrate this, we employ I@pital’'s rule to find the limitA — 0in Eq. (9.5),
which yields

In[¢x(w)] = —pB[l- exp(finBf’G)]
— p(iwK)P (1 -1/8, iwKB™?).  (A.90)

S. B. Lowen and M. C. Teich Fractal-Based Point Processes Wiley (Hoboken, NJ), 2005



S. B. Lowen and M. C. Teich

378 DERIVATIONS

As B approacheso, we obtain

In [QSX (w)]

Q

—puB[1 - (1 —iwKB™")]
— p(iwK)/P T(1 - 1/p)
~ —ipwKBY™P — u(iwK)YP T(1 -1/p)
~ —pu(iwK)YPT(1-1/8), (A.91)

thereby validating the equivalent result shown in Eq. (9.13), but for determiristic
only.

For randomK, we turn to Lebesgue measure theory (Lowen & Teich, 1990).
Suppose that a stochastic impulse response funétioi’;, ¢t) and a deterministic
impulse response functidmn, (t) obey the relation

E[L{t: hi(Ky,t) > z}] = L{t : hao(t) > z} (A.92)

for allamplitudes:, where£ denotes the Lebesgue set measure. Shot-noise processes
constructed from these two impulse response functions will then have identical first-
order statistics (Gilbert & Pollak, 1960). For fractal shot noise, in particular, any
stochastic impulse response functior{ K, t) satisfying

00 z <0

B-A 0<z<K,B”
ElLft: (Ko t) > o} = (z/K2)" P — A  FKy;B P <az<KyAP

0 x> Ko AP

(A.93)

for someg, A, B, and K5, has identical first-order statistics as the deterministic
impulse response function (Lowen & Teich, 1990)

Kyt # A<t<B

ha(Ka, t) = { 0 otherwise. (A.94)

In general, finding a nontrivial ensemble of impulse response functions for which
the equivalent impulse response function follows the form of Eq. (A.94) proves dif-
ficult. However, for the particular casé = 0 and B = oo we find

E[,C{t : hl(Kl,t) > l‘}]

E[L{t: Kit7 > a}]
E[z{t t< KM/P afl/ﬁ}]

- B [Kll/ﬂ z—1/8 (A.95)

for all amplitudesz. For the deterministic power-law impulse response function, we
have

L{t:ho(Kat)>a} = L{t: Kot P>z}
= E{t:t<K21/B:1771/ﬁ}
K)/P =10, (A.96)
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again for all amplitudeg. Thus, the stochastic ensemble of impulse response func-
tions in Eq. (A.95) and the deterministic impulse response function in Eq. (A.96)
exhibit identical first-order amplitude statistics, provided

E[K}/B] — K./7, (A.97)
so that o EB[KUB]
, = 8] (A.98)

ForA > 0or B < oo, Egs. (A.95) and (A.96) are no longer in accord foralbo that
the equivalent impulse response function does not have the form of Eq. (A.96). But

for the case of interest, we indeed have- 0 andB = oo, permittingE [Kl/ﬁ]ﬁ to
be used in place of deterministi€ in all first-order statistics, including Eq. (9.13).

For finite B, the process still approaches a stable form for large valuesidbw-
ever, merely increasingleads to a degenerate characteristic function; normalization
becomes necessary. To demonstrate convergence to a particular form, we therefore
consider the limitx — oo, K — 0, with the dimensionless produgf K fixed at a
value ofwgl. Considering the above limit, Eq. (A.90) becomes

In[¢px(w)] — —pB[l—exp(—iwwy' p ™ BP)]
— pliwwy  u VL1 =1/, iwwy !t p? B7P)
= —z[1—exp(—iz " w/wp)]
— (iw/wo) P T(1-1/8, iz~ P w/wp) , (A.99)

where we definee = uB. As p increases withB fixed, the quantityr increases
commensurately. The argument of the exponential in Eg. (A.99) then decreases,
permitting the following simplification to be applied:

ln[¢X(w)] — - [1 - (1 — iz P w/wo)]
— (iw/wo) P T (1 —1/8, iz P w/wy)
= —iz' P w/wy — (iw/w)'/P r(1-1/p, iz P w/wo)
— 00— (iw/wy) /P T(1-1/8). (A.100)
The result is in the precise form of a stable characteristic function, as defined in
Eqg. (9.14).
A.6.3 Autocorrelation

We proceed to provide expressions for the shot-noise autocorrelation for specific
parameter ranges.

e Forg = 1and0 < || < B — A, we have

—Itl
Ru(t) = E[K2]/AB (s +|t| s)"Y/%ds
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—ltl

2E[K?] In [31/2 + (s+ |t\)1/2}j

1/2 . 1/2
= 2E[K?] In il/’z i g - |;f|))1/2] ’ (A.101)
finite if B < oo and eitherd > 0 ort # 0.
e Forg =1andt=0,
B
Ru(t) = EU@]/ ()L ds
= E[K?] [/Arl - B7'] (A.102)

is finite whenA > 0. For3 = 1 and0 < |t| < B — A, another logarithmic
form emerges,

B—|t|
Ru(t) = EV@LA (2 + [t s) 1 ds

‘t| B—|t|
= EB[K?] |! ln{ }
s+ [t] 4

= E[K?] |t ln[(l— tl/B) (1+t]/4)], (A.103)
which is finite if A > 0.

e For =2 andt = 0 we obtain

B
Ry(t) = E[K?] / (s*)"%ds
A
= 1E[K?][A3-B7%], (A.104)
finite for A > 0. For3 = 2 and0 < |t| < B — A, we have

B—|t|

Ra(t) = EU@LA (52 + [t] 5)~2 ds
_opi [l 2 s Bl
= Bl }{Itl%(ﬁtl) I s+|t|L
B o f 24+l 2B
= BlK7] {|t|2A<A+ 0 WFBE )

421t % In [(1 —Jt|/B) (1 + |t|/A)} } (A.105)

finite whenA > 0.
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e For generafp > 1, A > 0, andB = oo, a simple form forR, (t) emerges in
the limit |t| — oco. We first find an upper bound for the integral:

/ (s + [t] s)_ﬁ ds / s P(s+t])Pds
A A

o0
[ a2 as
A
A=A
-1
For the lower bound we truncate the integral at some vélue

/ (2 + lt]s) " ds / s B(s + 1)~ ds
A A

T
/ 5B (T + 1) ~" ds
A

A

It 5. (A.106)

V

1- _ p1-5
_ AT (T + [t))™°, (A.107)
g—1
valid for anyT > A. We choosd” = (A|t|)'/?, so that
o _ ALB (Al (1-B)/2 _8
/ (s> +1tls) " ds > (Al (A2 + ]
A p-1
AP

-8
_ -3 1/2
= G P [ A/l

x [1 - (A/\t|)(5‘1)/2] . (A.108)
Finally, combining limits yields

(1 i) o agupere]

= -8
/ (s> +1t|s) " ds
A

1P AP (5= 1) 1, (A.109)

for all ¢ such thaft| > A. In the limit |[¢| — oo, the lower bound approaches
unity, so that

/OO (s* + || s)_ﬁ ds — |t|TPAYP/(B-1) (A.110)
A

and

AP
Ry(t) — E[K?] a1 |t =5, (A.111)
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A.7 FRACTAL-SHOT-NOISE-DRIVEN POINT PROCESSES

A.7.1 Integrals for counting statistics

The counting distribution for the fractal-shot-noise-driven Poisson process derives
from a recursion relation. We consider the case for deterministicReiterating
Egs. (10.4) and (10.5), we have

1 n
pz(n+ T) = ——= 3 expz(n =k T), (A.112)
k=0
and no [ k+1
crp = y/ [hT(K7 t)] exp[—hr(K,t)] dt. (A.113)

The recursion coefficients, assume four different forms, depending on the value of
(6 and the relative magnitudes df B, andT'.

e Forg#1andB > A+ T:

MKk+1
k! (1 _ ﬂ)kJrl

A+T
A e O | 2

A

B-T k+1
+ / [(u + T)l_ﬁ — ul_ﬁ]
A

x exp{l_Kﬁ [(u+T)' 7 — w7 } du

+/B [Blfﬁiulfﬁ]lﬁkl
B-T

X exp{—ll(ﬁ [B'F — 7] } du> ) (A.114)

e Forg#A1andB< A+ T:

[LKkJrl
B
1-8 _ g1-8 k+1
x ( /A [u ]
X exp{_ﬁ [(u+T)' =P — A1=0] } du
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+(T+A—B) [B'=F — At-A)*H!

X exp{—ll(ﬂ [B'7F — AP }) (A.115)

e Forg=1andB > A+ T

/.LKk+1 {
Cr =

L () ()
[ ) (2)
ALPENTGr e o

o e B G)
e ()] (2)
)T ) e (aa17)

The count moments of the fractal-shot-noise-driven Poisson process also derive
from a recursion relation, but in this case we can easily consider stochastic as well as
deterministicK . Reiterating Eqgs. (10.8) and (10.9), we have

ZH)! n n 21
Ao 2 Wz o) e
with

E{ 5%} and by = ME{ [ N [hT(K, t)] = dt] . (A119)

o0

If
—

The recursion coefficients, also have four different forms, depending @and the
relative magnitudes of, B, andT":

e Forg#A1andB > A+T:

k+1 B—T
= W {/A [(u + T)l—ﬁ _ ul_g] k+1 du
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+ /A+T [ul_ﬂ - Al_ﬁ] S du
A

+ / "’ [B1F — 2= du}. (A.120)

B-T

o Forg#1landB < A+ T:

pE[K*H]

W {(T-i-A — B) [Bl—ﬂ _ Al_ﬁ}k"'l

+ /B [ulfﬁ — Al*ﬁ]k+1 du

A

B
+/ [B1=F — 18] du}. (A.121)
A
e For6=1andB > A+ T

k+1 B-T 1 k+1
b, = MEIET] / m( 4L du
k' A L u

A+T w1k+1
+ / [ln( du
A ]

+/B {ln(B)-k+1 du}. (A.122)
B-T u) |

e Finally, for5=1andB < A+ T

= S o [u(2)]
of ()]
S ()] ) (129

A.7.2 Expressions for normalized variance

General closed-form expressions for the fractal-shot-noise-driven Poisson-process
normalized variancé’(T) do not exist. However, in some special cases and limits
one can indeed find such forms, and we present their detailed derivations below.
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e Forg = % thenormalized variance becomes

F(T)=1+ B(K"] /qET—u) /B_(g2 +ut) V2 dt du
TE[K](B'/? = A1) Jy A ’
(A.124)
where we define the upper limit of the outer integral as
® = min(7T, B — A), (A.125)

namely the smaller df’ and B — A. For the inner integral we have

B—u B—
/ (2 +ut)"1/2 dt:2{1n[t1/2+(t+u)1/2}} " (A126)
A A

so that the outer integral simplifies to

2/:)(T_u) 1n[1+(1_u/3)1/2] du
P
72/0 (T —w) ln{lJr(lJru/A)l/Q} du

Bl/2
+1In i (2T® — ®?). (A.127)

Theremaining integrals in Eq. (A.127) follow the form

Q/O(I)(T —u) ln[l +(1 —&—u/c)l/Q} du

(14+®/c)'/?

4c(T+c)/ v In(l +v)dv

(1@ /c)!/2
—4c* / v¥In(1 4+ v) dv (A.128)
1

(2T — B) 1n{1 +(1+ @/0)1/2}
+c[(c+2T — 18] (14 ®/c)/?
=22 —2¢T —T® + 192, (A.129)

whereEq. (A.128) derives from the substitution= (14 u/c)'/2. This yields
the following expression for the normalized variance itself wHen %:

E[K?]
TE[K] (31/2 _ A1/2)

F(T) = 1+
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BY? 4 (B — ®)1/?
A1/2 + (A+ @)1/2

x{(b(ZT —®)In

+ 1(® — 6T +2B) (B? — B®)!/?

+ 1(® — 6T — 2A) (A% 4 AD)'/?

W=

- %(B2 — A%+ 2T(B + A)}. (A.130)
e For( = 2 the normalized variance becomes

2 o B—u
F(T):1+T(21;“?i[f;[]m/0 (T—u)/A (t*+ut)"2dt du, (A.131)

where® is defined as above. For the inner integral we have

B—u
/ (t? +ut)2dt

A

_/B_“l u_ _u 2. 2w
- Ja ud [ (t+uw)? ot t4u

B—u
_3| u U
= - — —21 21 A.132
u { ey n(t) + n(t—i—u)}A ,  (A.132)
so that the outer integral simplifies to

T 2 1 T

— ———— ] In(1 A)— —

<u2 U A) n(l+u/4) Au

T 2 1 T |*

(uQ — E + B> 111(1 — U/B) + Bu . (A133)

The quantity in Eq. (A.133) is not defined in the limit — 0, so we use
I'H dpital’s rule to obtain

. T 2 1 T
Jiny Kuz Tu A) InL+u/A) = Au}

In(1+u/A) —u/A

= T lim 5
u—0 ur
. In(14+wuw/4) 1
SR T A
T 2
_ T 2 A.134
242 A 0 ( )

Similarly, we obtain-T"/2B2+2/ B for the second pair of termsin Eq. (A.133).
This yields the following expression for the normalized variance itself when
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_24BE[K? [T 2 T T 2 T
T(B-AEIK] |242 A A® 2B> B B®
T 2 1

T 2 1
— ——+—= ) In(1-®/B)|. A.135
(g3t ma-em) (n.135)

In contrast to the exact expressions for the normalized variance that are available
for the two specific values gf considered above, approximate expressions can be
obtained for arbitrarys in the following limits: 7' < A, A < T <« B, andT > B.
Rather than considering limits of the entire normalized variance expression

F(T)=1+ QE[If:] /q)(T —u) /Bu(t2 +ut) P dtdu, (A.136)
TE[K]/ t=Pqt ° A
A

we obtain limits for the integrals within this expression.

e ForT <« A, we haved = T. By using I'Hopital’s rule twice we obtain

T B—u 1 B
lim [ (T—u) / (2 +ut)~P dt du / T? = = / )~ P dt, (A.137)
T—0 0 A 2 A

sothat for smallT",

F(T) ~ 1+ e T
E[K}/ t=Pdt
A
= 1+E[K2][/Bt—2f’dt]T, (A.138)
a A

as provided in Eq. (10.15).

e For A <« T <« B, again we havedb = T, but now the limiting expression
depends orp. Since in this casel < B, the integral in the denominator of
the normalized-variance expression provided in Eg. (A.136) tends to a simple
limitas B/A — oo:

B B'"P/1-p) p<1
/ t=#dt — { In(B/A) B=1 (A.139)
4 AB/(B-1) B>1.

The double integral in Eq. (A.136), henceforth dend®ethas a more complex
form; we consider in turn five expressions for different ranges. of
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1. For0 < 8 < 1, we definer = A/T andy = B/T, so that
1 Yy—u
Q= THB/ (1—u) / (t* 4+ ut) =" dt du. (A.140)
0 x
Settingz = 0 and using I'tbpital’s rule leads to

1 Yy—u
lim [ (1—u) / (% +ut)~? dfd“/ y' =% =21 -28) ",
0 0

Yy—oo

(A.141)
so that the normalized variance becomes
EK*(1-8) , 5
FT)~14+ ————= B "T, A.142
D=1 BT (1= 2) (A142)

as provided in Eq. (10.16).
2. Forg = % we again set = 0 and use I'Hbpital’s rule to obtain

1 y—u 1
lim (1—u) / (t? + ut)~/? dtdu/ In(y) = 3 (A.143)
Y— 00 0 0

sothat

F(T)~1+ EE[[I;] %B‘”Q (In(B/T)] T. (A.144)

3. For% < B < 1, we consider the limits in which both — 0 andy — oc.
Here the integral in the numerator becomes

1 00
Q = TB*Q*B/(l—u)/(t2+ut)*’3dtdu
0 0

1 0
= TS_zﬁ/(l - u)/(u2x2 +u*z) P udrdu (A.145)
0 0

1 00
= T?’_Qﬁ/(l —u)u' =P du / (22 + ) P da
0 0

B 73728 I'(1—p)T(26 1)
S wageom 0 A

whereEq. (A.145) derives from the substitutian= ¢/u in the inner
integral. The normalized variance then becomes

E[K?]T(1— ) T(23 - 1)
E[K] (3—28)T(3)

which concurs with Eq. (10.16) when the definitiors 2(1— ) is used.

F(T)~1+ BA-L 7208 (A.147)
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4. Forp =1 we definer = T/A andy = T/ B to obtain
T B—u

/ (T—u)/ (t? +ut)" ' dt du
0

A

Q

1
1—
T/ Y In(1 —yu) du
0 u

1
1 _
+ T/ " Y In(1 4+ zu) du. (A.148)
0

The first term in Eq. (A.148) approaches zergjas 0 since

1

1_

0>T/ “ In(1 —yu)du
0 u

1 —
>T/ ! uuln(l—y)du
0 u
=17TIn(1-y), (A.149)

=2
andIn(1 — y) — 0 asy — 0. For the second term in Eq. (A.148), two
applications of I'Hopital’s rule and some simplification yield

1

lim
xr—00 0 u

Y (1 + zu) du/ In?(z) = 1. (A.150)

The normalized variance therefore becomes
2E[K?] In*(T/A)

F(T)~1+ K] n(B/A) (A.151)
5. Forg > 1, we definer = T'/A andy = B/T to obtain
x TY—u
Q=A% / (z —u) / (t* + ut)~? dt du. (A.152)
0 1

Settingy > 1 and using I'Hbpital’s rule yields

lim z(x —u) /fy_u(t2 +ut)™? dtdu/x = [2(5- 1",

T— 00 0

(A.153)
whereupon the normalized variance becomes
E[K? AP E[K?

F(T)~1+ Ly ~1+4+ Ly (A.154)

BK](B—1) " E[K] "

e Finally, in the third region, wherd" > B, we have® = B — A. Using
the substitutiorv = ¢ + u and interchanging the order of integration in the
numerator of Eq. (A.136) yields

F(T)—1+255§]2] /ABtﬁ/tB <1+t;v)vﬁdvdt//jt(:ft5.5)
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In the limit 7" > B, the (¢ — v) term in the numerator vanishes so that

F(T) =~ 1+2E§]2]/A3tﬁ/t3uﬁdvdt//jtﬁdt
+255§]2]; [/ABt‘ﬂdtr//jt‘ﬁdt

E[K2 /B B
= 1+ =P dt
E[K] J4

E[K?]
B[] *

1+ (A.156)

in agreement with Eq. (10.17).

A.7.3 Expressions for normalized Haar-wavelet variance

Equation (3.41) provides a relation that permits us to obtain the normalized Haar-
wavelet varianceA(T") directly from the normalized variancE(T"). This direct
route is suitable for all forms of'(T") except those in which its leading term is
linear inT [see Egs. (5.37)—(5.39)]. This latter condition arisesifox. A, and for

A < T < Bwith 8 < 3. Inthese two cases, we obtaif{T") using other methods,

as described below.

e ForT <« A, we form three derivatives of the double integral in Eq. (A.136),

denoted?, which yields
T B—u
QO = / (T—u)/ (t* +ut) P dtdu
0

A
dQ T B—u )
= = t ) Pdtd
o7 /o /A (t° + ut) U
B-T

d*Q /
= (2 +Tt) P dt
dT? A
d3Q -~ B-T
i B(B-T)] " - 5/ t= P+ 1)~ gt
A
3 B
L%’ — _p-s _ﬂ/ 4~ (1428) g
dT°1T=0 A

SEREICR N

2 B 2

F(T) =~ 1+7E[K }/ t—wdtT—L[K] [A™2F + B~2°| 17

a A 6a

E[K?]
3a

=
=
2

1+ [A7%0 4+ B=2°| T2, (A.157)
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e ForA < T < Bandf < % we make use of results from Eq. (A.157) to

obtain
d3Q -8
B-T
- 5/ t P+ T)" A gt
A
3 -8
28 d=ad - _ E E—l
dr? T\T
B/T—1
—ﬁ/ 7P (x+1)" ) dz
A/T
d*Q o
. 283 _ -B —(1+8)
A}}Tni@T IT7 ﬂ/o z P (z+1) dx
B/T—o0
I'(1-p8)I'((28)
= —f——"" A.158
b r'(1+p) ( )
Finally, then, we obtain
E[K?] [P 2E[K?] (1 -
F(T) ~ 1+—[ ] / 20 g~ UL U= 5, A
a  Ja E[K]|B'“"T
T2 (- p)I'(2p)

‘T2 20525 "

2 B
= 1+E[K]/ t20atT
a A

I(1+P)

E[K?]  pra-pres 17
T E[K] 1-20)(3-20)T(1+5) BP

2 B
= 1+E[K]/ t2atT
a A

E[K?] BT(1-8) (26 - )T(28 - 1) T*%
EK] (1-20)3-28)31(3) B 7

2 B
= 1+E[K]/ t*=2dtT
a A

E[K? T(o/2)T1—-a) T

EK] 1+a)T(1—a/2) B/2

E[K?] T(o/2)T(1—a) T
E[K] (1+a)T(1—a/2) B
E[K?] (2 -2)T(e/2)T(2—a) T°
E[K] (o®-1)T(1-a/2) B2’
in accordance with Eq. (10.19). This result applies fopga# 1.

AT) ~ 1+(2-29

= 1+ (A.159)
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A.7.4 Integrals for time statistics

Calculation of the forward-recurrence-time and interevent-interval statistics begins

with p(0; T'), the probability that there are zero events in an interval of duréfion

chosen independently of the process, and proceeds to its first two derivatives.
From Eqg. (10.3), in the special case of determinisficwe have

p2(0:T) = exp (u | ettt -1 du) — expluf(T)],  (A160)

where the quantity' (7'), implicitly defined in Eq. (A.160), serves to simplify the no-
tation. In accordance with the results provided in Sec. 3.3.1, the forward-recurrence-
time probability density then becomes

polt) = — = [p2T)] = — (i) T (A.161

while a second derivative yields the interevent-interval density:

1 d?

pe(t) = —mﬁ[pzm?ﬂ} _
— ipz(O;t){M [dj;(tﬂ + d;t(;f) } : (A.162)

Thus,pz(0;T), py(t), andp.(t) depend, in turn, orf (¢) and its first two derivatives,
which we calculate below.

The functionf(¢t) assumes four different forms, depending on the valye arid
the relative magnitudes of, B, andt.

e Forg#1andB > A+t

ft) = /AAH (exp{—l Ifﬁ [u!=F — Al—ﬂ}} — 1> du
+ /AB_t (exp{—lKﬂ [(w+t)F — ul—ﬁ]} ~ 1) du

+ /}:t (exp{_l_Kﬁ [B'F — ul—ﬂ]} - 1) du

—%(Lf) _ K/AB_t(u—H)_ﬂ exp{—l_Kﬂ [+ £)1" —ul—ﬁ]}du
+ (1 - exp{l_Kﬁ [(A+t)F - AF] })

d;’;gﬂ = KBﬁexp{l_Kﬁ [Blﬂ(Bt)lﬁ]}
—K(A4+t)7" eXp{_l_Kﬂ [(A+t)F — AP }
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B
K[ [Bu?  Ku
A+t
X exp{— 1 Ifﬂ [ul_ﬁ —(u— t)l_ﬁ] } du. (A.163)

e Forg#1landB < A+t:
f(t) _‘ABGM{—lfﬁhlﬁ_Alq}_1>m
+ /AB (exp{l_Kﬁ [B'7F — ulﬁ]} - 1) du

+(t+A-B)(e—1)

_ 4@

a0
d¥(t)
= 0 A.164
dt? ( )

e Forg=1andB > A+ t:

f) = (uit)K du+ o <‘3>K1] du
/Bt[(é)K ]
o - Kﬁ;fi K j‘jml
K+1/A u+tK+2 du. (A.165)

e Finally,forg=1andB < A + t:
B A K
NG

+(t+A-B)

f@t)

du+/AB [(E)K— 1} du
()

RV 1_<A>K: T

d*f(t)
dt?

= 0. (A.166)
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A.8 ANALYSIS AND ESTIMATION

A.8.1 Fourier-transform effects

For practical reasons, we estimate the spectrum via the Fourier transform of the
sequence of coun{sZ;. }. A simple factor ofl’"~2 connects the count-based and rate-
based spectral estimates. This gives rise to an estimated spectrum whose expected
value differs from that of the point-process spectrum, as we now proceed to show
(Thurner et al., 1997).
As previously, consider a set 8f counts, each of duratidfi, with 0 < k& < M.
Define the Fourier transform of the counts via
M-1
X(n) =Y Ze /M, (A.167)
k=0

The estimate of the spectrum then becomes
Sz(n) = M7 [X(n)?

M-1 M-1

M71 Z Z Zk Zm 6i27r(k7m)n/lw’ (A168)
k=0 m=0

with an expected value

M—-1 M-1

{SZ } _ -t Z Z i2ntk=mn/M gz 7.1, (A.169)

k=0 m=0

We can express the correlation between the counts in terms of the spectrum of the
point process itself by means of

E[ZkZm] =

T
E / / dN (s + kT)dN(t +mT)
s=0 Jt=0

/ Gls—t+(k—m)T|dsdt
t=0
2

= ‘ul dudv

(k—m)T
7 Jo=|u| m)T] 2

= [ul) Glu+ (k= m)T] du

/.
[
[

(T
T

0

T - |
/ (T — |u) / Sy (f) e flutk=m)T] g gy (A.170)
u=-—T .

Finally, combining Eqgs. (A.169) and (A.170) yields

M—-1 M-1

B8] = 4 30 3 et / (T~ Jul)

k=0 m=0 -T
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X/ SN(f) 6i27rf[u+(kfm)T] df du
2

1 [ M—1
_ k2w (n/M+fT)
= ) svn X
k=0
T .
></ (T — |ul) ™" du df
u=-—T
1 e sin?(mn + Mn fT) sin?®(rfT
M Ji=—oo sin®(mn/M + 7 fT) f

T [~ z \ sin®(z)  sin®(Mz)
= — Sn|— de. (A171
7'&']\/[/ N(?TT) z?  sin®(x + 7n/M) v )

— 00

For a fractal-based point process in whigk (f) takes the form of Eq. (5.44a),

we obtain
= Elp|T [ ot o sin?(z)  sin®(Mx)
E[Sz(n)] ™™ /,oo (1 fsT)* |17 x?  sin®(x + mn/M)
(A.172)

To proceed further, we consider the case a < 2, which encompasses the vast ma-
jority of fractal-based point processes observed in practice, as discussed in Sec. 5.2.2.
The fraction inside the integral in Egs. (A.171) and (A.172) then only becomes im-
portant within the range-w(n + 1)/M < z < —w(n — 1)/M. For large values of
M, this range becomes quite narrow. Substituging = + =n/M we obtain

.2 s 2
3 M sin” [ M (y — M
lim . 25111( x) _ g SR [ (-yQ mn/M))
z——mn/M sin(z 4+ 7n/M) y—0 sin”(y)
B sin?(My)
~ y—0 sin®(y)
= M2 (A.173)

For largeM we can therefore insert Eq. (A.173) into Eq. (A.172) to obtain

E [§Z (n)}

oo in?2
~ E[M]T/ 1+ (rfsT)™ |z =] Smx# M?6(x + mn/M) dz

oM J_
= PR [ e vy (172)

which essentially reproduces the dominant term of Eq. (3.67).

Finally, for low frequencies such that < M, the factor in large brackets in
Eq. (A.174) approaches unity, so that we recover the canonical form of Eq. (5.44a).
For other values at, this factor presents a confounding effectin estimating the fractal
exponent.
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